Sales-Forecasting-for-Inventory-Optimisation

๐Ÿ“ˆ Sales Forecasting for Inventory Optimization

Project Banner


Excel Status Forecasting


๐Ÿ“˜ Overview

This project focuses on improving inventory management for an independent supermarket through accurate sales forecasting. Using Excel-based time series modeling, it compares multiple forecasting techniquesโ€”Holtโ€™s Linear Trend, Holt-Winters Seasonal Model, and Damped-Trend Exponential Smoothing (SES with damping)โ€”to determine the most effective method for minimizing stockouts and overstock.


๐ŸŽฏ Objectives


๐Ÿงพ Dataset


๐Ÿ“Š Methods Applied

๐Ÿ”น Holtโ€™s Linear Trend (Method A)

๐Ÿ–ผ๏ธ Fig A: Solver Output โ€“ Holtโ€™s Linear Trend
alt text


๐Ÿ”น Holt-Winters Seasonal (Method B)

๐Ÿ–ผ๏ธ Fig B: Solver Output โ€“ Holt-Winters Seasonal
alt text


๐Ÿ”น Damped-Trend Exponential Smoothing (Method C)

๐Ÿ–ผ๏ธ Fig C: Solver Output โ€“ Damped Trend ES
alt text


๐Ÿ”น Combined Forecast (Method D)

๐Ÿ–ผ๏ธ Fig D: Combined Forecast Output
alt text


๐Ÿ“ˆ Evaluation: Error Metrics

Method MAE MAPE RMSE
A 82,260 25.4% 18,192.65
B 82,468 25.6% 18,219.33
C 82,937 26.4% 18,174.48
D 69,740 21.09% 16,854.37

๐Ÿ–ผ๏ธ Fig E: Forecast Accuracy Comparison


โœ… Findings & Recommendations


๐Ÿ” Replication & Audit


๐Ÿš€ Getting Started

  1. Download the Excel workbook from this repository
  2. Open Enterprise Data.xlsx Get Dataset Here
  3. Navigate to each methodโ€™s worksheet
  4. Use Solver to minimize RMSE and observe forecast outputs

๐Ÿ“š Reference

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020).
The M4 Competition: 100,000 time series and 61 forecasting methods.
International Journal of Forecasting, 36(1), 54โ€“74.
https://doi.org/10.1016/j.ijforecast.2019.04.014


๐Ÿ‘ค Author

Ramanav Bezborah
๐Ÿ”— GitHub Profile